
Iterative Methods and
Preconditioning Techniques

Esmond G. Ng
(EGNg@lbl.gov)

Lawrence Berkeley National Laboratory

E.G. Ng / 2

Direct Solution of Linear Systems of Equations

q Need a triangular factorization of the coefficient matrix.
q Require a finite number of operations to compute the solution.
q Can pivot to maintain numerical stability.

q Suffer from fill (zero entries turn into nonzero) when
coefficient matrix is sparse.
§ Manage fill.
§ Cost of Gaussian elimination.

q Need extra processing for sparse matrices.
§ Ordering
§ Symbolic factorization

E.G. Ng / 3

Iterative Solution of Linear Systems of Equations

q Start with an initial guess of the solution.
q Generate a sequence of approximations.
q Often require only matrix-vector multiplications and inner

products.
§ Great for sparse linear systems since no matrix factorizations are

needed.

q Generating the sequence???
q Convergence of the sequence???
q Often unpredictable number of operations.

E.G. Ng / 4

Iterative Solution of Linear Systems of Equations

q Many iterative methods and lot of theory.

q Excellent references:

§ Richard Barrett, Michael Berry, Tony Chan, James Demmel, June
Donato, Jack Dongara, Victor Eijkhout, Roldan Pozo, Charles
Romine, and Henk van der Vorst, “Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods”, SIAM,
1994.

§ Yousef Saad, “Iterative Methods for Sparse Linear Systems”,
available from http://www-users.cs.umn.edu/~saad/books.html.

§ Henk van der Vorst, “Iterative Krylov Methods for Large Linear
Systems”, to be published in 2003.

E.G. Ng / 5

Iterative Solution of Linear Systems of Equations

q Some are simple:
§ Jacobi
§ Gauss-Seidel
§ Successive overrelaxation and symmetric successive

overrelaxation

q Others are more complicated:
§ Conjugate gradient and generalized conjugate gradient
§ Minimum residual and generalized minimal residual
§ Biconjugate gradient and biconjugate gradient stabilized
§ Conjugate gradient squared
§ Quasi-minimal residual
§ Chebyshev iterations

E.G. Ng / 6

The Conjugate Gradient Method

q For symmetric positive definite linear systems, the conjugate
gradient method is the most popular method.

q Based on minimizing a convex quadratic function.

q The minimizer is given by the solution of Ax = b .

T T1(x) x Ax x b
2

φ = −

E.G. Ng / 7

The Conjugate Gradient Method

q Basic idea in minimizing φ(x) = ½xTAx − xTb :

§ Given an approximation to the minimizer, x(i-1).
§ Select a search direction p(i).
§ Minimize φ(x) along the direction x(i-1) + α p(i).
® This becomes a problem of a single (scalar) variable: α.

§ Let αi be the minimizer.
§ Then set x(i) = x(i-1) + αi p(i).
§ Repeat …

q Choice of search directions p(i) ?
§ Chosen so that they are A-orthogonal (or A-conjugate).

[p(i)] T A [p(j)] = 0 , for i ≠ j .

E.G. Ng / 8

The Conjugate Gradient Method

(0)

(0) (0)

(0)
1

(i 1) T (i 1)
i 1

i 1 i 1 i 2
(i) (i 1) (i 1)

i 1
(i) (i)

(i) T (i)
i i 1
(i) (i 1)

i

Given an initial guess x .
Compute the initial residual r b Ax .
Set p 0; 1.
for i 1, 2,

[r] r
/

p r p
q Ap

/[p] q
x x

−

− −
−

− − −

− −
−

−

−

= −

= ρ =

=

ρ =

β = ρ ρ

= + β

=

α = ρ

= + α

L

(i)

(i) (i 1) (i)
i

p
r r q
Check convergence; continue if necessary

end

−= − α

2 inner products

1 matrix-vector multiplication

3 vector updates

E.G. Ng / 9

The Conjugate Gradient Method

q Need 2 inner products and 1 matrix-vector multiplication.
§ Great for sparse linear systems.
§ No fill to worry about.

q Parallel implementation of the conjugate gradient method.

§ Assume that each vector is partitioned among the processors.
§ Partial inner products can be computed in parallel and then globally

summed.

§ Need parallel sparse matrix-vector multiplication!

E.G. Ng / 10

Notion of Preconditioning

q Lot of theory on the conjugate gradient method …

§ The conjugate gradient method converges in at most n iterations.
® Krylov subspaces.
® In practice, difficult to say because of roundoff errors.

§ If A has m distinct eigenvalues, then the conjugate gradient
method requires m iterations to converge to a solution.
® Desirable to have a small number of clustered eigenvalues.

q To improve the convergence, change the eigenvalues of the
coefficient matrix.
§ The preconditioning step.
§ Many choices.

E.G. Ng / 11

Preconditioning

q Consider Ax = b ; A symmetric positive definite.

q Let K be a nonsingular matrix.
q Then KAKT is symmetric positive definite.
q Instead of solving Ax = b, solve

with B = KAKT as the coefficient matrix, c = Kb as the right-
hand side, and y = K-Tx as the unknown vector.

q The eigenvalue distribution for B = KAKT may be quite
different from that of A .
§ K is referred to as the preconditioning matrix or preconditioner.

q Choice of K ?

() ()T TKAK K x By c Kb .− = = =

E.G. Ng / 12

Preconditioning … An Example

q A is symmetric and positive definite.
q Let L be the Cholesky factor of A : A = LLT .

q Suppose we were able to set K = L-1 .
q Then KAKT = L-1AL-T = L-1(LLT) L–T = (L-1L)(LTL–T) = I .

q The conjugate gradient method, when applied to
(KAKT) (K-T x) = (K b) ,

will converge in 1 iteration.

q Need more realistic choices.

E.G. Ng / 13

Approximate Triangular Factorization

q Talked about sparse Gaussian elimination last time.

q If A is symmetric positive definite, then A = LLT , with L
being lower triangular (Cholesky factorization).

q Instead of computing L exactly, we can compute an
approximation to L : La .

q Then set K = La
-1 .

q If La is a good approximation to L , then KAKT will be close
to I , and La will be a good preconditioner for A .

q How to construct the approximation?

E.G. Ng / 14

Incomplete Triangular Factorization

q Recall that the triangular factorization of a sparse matrix A
will change some of the zero entries into nonzero (fill).

q Idea for constructing the approximation:
§ Discard some of the fill entries in the factorization.
§ The discarded fill entries may or may not participate in updating

future columns (depending on the algorithms and location of fill).
§ Resulting triangular factor is inexact, and is called an incomplete

factor.
§ Simplest dropping criterion: Discard all fill entries.
§ Many other ways to drop fill to produce an incomplete

factorization.

q Matrix may lose positive definiteness.

E.G. Ng / 15

Example of Sparse Cholesky Factor

Blue dots are the original
nonzero entries.

Red dots are the fill entries.

E.G. Ng / 16

Computing Incomplete Factorization in Parallel

q Once a dropping criterion is decided, the incomplete
factorization can be computed in parallel, much like sparse
complete factorization although there are fewer operations
and less fill.
§ Column modifications cmod(j1,k) and cmod(j2,k) can be performed

in parallel as long as columns j1 and j2 are assigned to different
processors and as long as column k of the factor is made available
to j1 and j2 .
§ Some of the cdiv operations can also be performed in parallel.

q Related issues: ordering and symbolic factorization.
§ Different from sparse direct methods and can be much more

difficult.

E.G. Ng / 17

Computing Incomplete Factorization in Parallel

q It is much harder to get good efficiency in parallel incomplete
factorization than in parallel complete factorization.

q Why?
§ Usually much fewer operations to perform.
§ Unlike sparse complete factorization, usually no dense submatrices

to allow memory hierarchy to be exploited.

E.G. Ng / 18

A Left-looking Block Incomplete Factorization

q Based on the theory and left-looking algorithms for sparse
complete Cholesky factorization [Ng/Raghavan ’99-’01].

q Choice of dropping criterion:
§ Nonzero entries that do not satisfy a threshold condition are

dropped from the Cholesky factor, and they do not participate in
updating later columns of A.

q Take advantage of the supernodal structure to exploit memory
hierarchy.
§ Drop rows of nonzero entries instead of individual nonzero entries.
® Within a supernode, a row of nonzero entries is dropped if all entries

satisfy the threshold condition.
® Force dense blocks to be retained.

E.G. Ng / 19

Left-looking Block Incomplete Factorization

E.G. Ng / 20

Left-looking Block Incomplete Factorization

q Requiring a row of nonzero entries within a supernode to be
dropped is a very stringent condition … may lead to too few
nonzero entries being dropped in large supernodes.

q Remedy: Divide each large supernode into small blocks (e.g.,
block size 2, 4, or 8).

q This forces a block structure in the incomplete factorization.

q Can be implemented easily in the framework of (serial/parallel)
sparse complete factorization.
§ Still exploit memory hierarchy.

E.G. Ng / 21

Preconditioned Conjugate Gradient Method

() ()

()

(0)

(0) T (0)

(0)
1

(i 1) T (i 1)
i 1

i 1 i 1 i 2
(i) (i 1) (i 1)

i 1

(i) T

Given an initial guess x . Compute incomplete factor K.

Compute the initial residual r Kb KAK x .

Set p 0; 1.
for i 1, 2,

[r] r
/

p r p

q KAK

−

− −
−

− − −

− −
−

= −

= ρ =

=

ρ =

β = ρ ρ

= + β

=

L

(i)

(i) T (i)
i i 1
(i) (i 1) (i)

i
(i) (i 1) (i)

i

T (i)

p

/[p] q
x x p
r r q
Check convergence; continue if necessary

end
If converged, set x K x .

−

−

−

α = ρ

= + α

= − α

←

E.G. Ng / 22

bcsstk15

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

no
nz

er
o

co
un

t i
n

IC

1

2

4

8

E.G. Ng / 23

bcsstk15

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

o
p

s
 i

n
 c

o
m

p
u

ti
n

g
 I

C

1
2
4
8

E.G. Ng / 24

bcsstk15

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

ti
m

e
 t

o
 c

o
m

p
u

te
 I

C

1
2
4
8

E.G. Ng / 25

bcsstk15

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

ti
m

e
 t

o
 p

e
rf

o
rm

 I
C

1
2
4
8

E.G. Ng / 26

spa060

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

n
o

n
ze

ro
 c

o
u

n
t

in
 I

C

1
2
4
8

E.G. Ng / 27

spa060

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

o
p

s
 i

n
 c

o
m

p
u

ti
n

g
 I

C

1
2
4
8

E.G. Ng / 28

spa060

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

ti
m

e
 t

o
 c

o
m

p
u

te
 I

C

1
2
4
8

E.G. Ng / 29

spa060

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11

drop tolerance

ti
m

e
 t

o
 p

e
rf

o
rm

 C
G

1
2
4
8

E.G. Ng / 30

Observations

q Effect of increasing block size:
§ Increase fill and operation count, but improve quality of

incomplete factor as a preconditioner.
§ Decrease time to compute incomplete factor.
§ Modest change in triangular solution time.

E.G. Ng / 31

Experimental Results

q Heat equations on 2-D and 3-D grids.

q Problems chosen so that number of nonzero entries per
processor is approximately constant as number of processors
increases.

p N/2-D N/3-D
1 40,000 27,000
2 73,441 42,875
4 138,384 74,088
8 252,004 125,000

16 467,856 195,112
32 891,136 314,432
64 1,679,616 531,441

E.G. Ng / 32

Incomplete Factorization Times for 2D Grids

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sparsity of Incomplete Factors

In
co

m
pl
et

e
Fa

ct
or

iz
at

io
n

Ti
m
es

1

2

4

8

16

32

64

E.G. Ng / 33

Incomplete Factorization Times for 3D Grids

0

5

10

15

20

25

30

35

40

45

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sparsity of Incomplete Factors

In
co

m
pl
et

e
Fa

ct
or

iz
at

io
n

Ti
m
es

1

2

4

8

16

32

64

E.G. Ng / 34

Preconditioned Conjugate Gradient Method

() ()

()

(0)

(0) T (0)

(0)
1

(i 1) T (i 1)
i 1

i 1 i 1 i 2
(i) (i 1) (i 1)

i 1

(i) T (i)

(i) T (i)
i i 1
(i) (

Given an initial guess x .

Compute the initial residual r Kb KAK x .

Set p 0; 1.
for i 1, 2,

[r] r
/

p r p

q KAK p

/[p] q
x x

−

− −
−

− − −

− −
−

−

= −

= ρ =

=

ρ =

β = ρ ρ

= + β

=

α = ρ

=

L

i 1) (i)
i

(i) (i 1) (i)
i

T (i)

p
r r q
Check convergence; continue if necessary

end
If converged, set x K x .

−

−

+ α

= − α

←

need sparse triangular solutions

E.G. Ng / 35

Parallel Conjugate Gradient Method

q Need to solve 2 sparse triangular systems at every iteration of
conjugate gradient.

q Can become the bottleneck in a parallel environment …
§ Triangular solutions are sequential in nature because of the

substitution process.
§ There is parallelism in sparse triangular systems, but too much

synchronization and too few operations, resulting in poor
scalability.

E.G. Ng / 36

Parallel Sparse Triangular Solutions

q Replace the substitution process in a triangular solution by a
sequence of matrix-vector multiplications, which has a higher
degree of parallelism.

q The extreme:
§ Explicitly invert a triangular matrix?
® Explicit inverse of a sparse triangular matrix is typically dense.
® Expensive to compute and expensive to store.

q Alternatives?

E.G. Ng / 37

Consider The Dense Case

q Let T be a lower triangular matrix.
q Solve Tx = b .

q Suppose T is partitioned into a block 2×2 matrix:

q Partition b and x accordingly:

11

21 22

T 0
T

T T

=

11

22

xb
b ; x

xb

= =

q Then the solution x is given by

()

1
11 1 1 1 11 1

1
21 1 22 2 2 2 22 2 21 1

T x b x T b
T x T x b x T b T x

−

−

= ⇒ =

+ = ⇒ = −

q Can avoid triangular solution if we have 1 1
11 22T and T explicitly.− −

E.G. Ng / 38

Sparse Triangular Solutions

q Apply the idea to sparse triangular matrices that
exhibit dense blocks on the diagonal, such as those
from block (complete/incomplete) factorizations.

§ Selective inversion – Compute the inverse of each dense
diagonal block [Raghavan ’97].

§ Related work: Anderson/Saad ’89; Alvardo/Schreiber
’93; Heath/Raghavan ’98; Raghavan ’98;
Teranishi/Raghavan/Ng ’02.

E.G. Ng / 39

Performance of Selective Inversion

q Consider sparse symmetric positive definite matrices.
q Performance results based on complete Cholesky factorization.

q Consider cost of factorization + cost of multiple triangular
solutions on a distributed-memory multiprocessor machine.

q Compare traditional substitution and selective inversion.

q Finite element matrices from a square grid.
§ Grid size varies with number of processors so that triangular

solution work per processor is about constant.

E.G. Ng / 40

Performance of Selective Inversion

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1 2 4 8 16 32 64 128
processors

ra
ti
os

 o
f

ti
m
es

fact

fact + 1 soln

fact + 2 soln

fact + 4 soln

fact + 8 soln

E.G. Ng / 41

Performance of Selective Inversion

q Small penalty in computing inverses of diagonal blocks.
q Big improvements when solving multiple right-hand sides.

q The results show that selective inversion has the potential of
improving the performance of multiple triangular solutions in
iterative methods with incomplete factorizations as
preconditioners.

E.G. Ng / 42

Performance of Selective Inversion

E.G. Ng / 43

If one is willing to compute some sort of
factorization of a sparse matrix as a
preconditioner, then there is essentially
no difference between sparse direct
methods and preconditioned iterative
methods.

Summary

E.G. Ng / 44

Project Idea

q Talked about SuperLU/SuperLU_MT/SuperLU_DIST last time.
§ Exploit dense blocks in supernodes.

q Incorporate selective inversion into sparse triangular solution.
§ Need to understand the data structure in SuperLU.
§ Need to identify the diagonal blocks.
§ Invert the diagonal blocks.
§ Rewrite the triangular solution in terms of inverses of the diagonal

blocks.
q Both Sherry Li (XSLi@lbl.gov) and I (EGNg@lbl.gov) can help.

